4.7 Article

P-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application

Journal

APPLIED SURFACE SCIENCE
Volume 538, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2020.148140

Keywords

P-n junction; CuO-ZnO composite; Nanowire; Ethanol; Gas sensing

Funding

  1. National Natural Science Foundation of China [51674067, 51422402]
  2. Fundamental Research Funds for the Central Universities [N180102032, N180106002, N180408018]
  3. Liaoning Revitalization Talents Program [XLYC1807160]
  4. Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control [HB201902]
  5. China Scholarship Council (CSC)

Ask authors/readers for more resources

CuO-ZnO p-n junctions were constructed by precipitating CuO nanoparticles on the surface of ZnO nanowires, resulting in an enhancement of gas sensing performance, specifically in ethanol sensing. The distinct sensing behaviors of the sensors were discussed in relation to several factors and considerations.
CuO-ZnO p-n junctions were constructed by precipitating CuO nanoparticles on the surface of ZnO nanowires followed by an annealing process. The molar ratio of Cu to Zn in the final composites was controlled by regulating Cu content in the precursor solution. XRD, SEM, TEM, EDS, and XPS were used for the structural characterization of the prepared samples. The results confirmed that the monoclinic CuO nanoparticles were closely and uniformly attached on the surface of the hexagonal ZnO nanowires to form the p-n junctions. Notably, the one-dimensional structure of the host ZnO nanowires was well-maintained during the p-n junction construction process. Five sensors based on CuO-ZnO p-n junction nanowires with different Cu/Zn ratios as well as the pure ZnO nanowires were fabricated and their gas sensing performance was systematically compared. The formation of CuO-ZnO p-n junction effectively enhanced the ethanol sensing properties of the host pure ZnO nanowires. And 5%CuO-ZnO exhibited the highest ethanol response at the operating temperature of 300 degrees C, which was about 4 times higher than that of the pure ZnO. Several factors and considerations were then discussed for the explanation of the distinct sensing behaviors of these sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available