4.7 Article

Constructing Z-scheme heterojunction with a special electron transfer path and more active sites over MnS/D-PCN for photocatalytic H2 evolution

Journal

APPLIED SURFACE SCIENCE
Volume 542, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2020.148707

Keywords

Z-scheme heterojunction; H-2 production; Defected PCN; MnS

Funding

  1. National Natural Science Foundation of China [21546014]

Ask authors/readers for more resources

By using a synergistically integrated strategy of defect engineering and Z-scheme heterojunction, the photocatalytic activity of PCN catalyst was enhanced for efficient solar-to-chemical energy conversion. The high PHE activity of MnS/D-PCN composite was attributed to the effects of defects and Z-scheme pathway.
Given that low hydrogen active sites and serious photoexcited electron-hole recombination greatly limits the solar-to-chemical energy conversion efficiency, a synergistically integrated strategy of the defect engineering and the construction of Z-scheme heterojunction is introduced to the design of PCN photocatalyst, a strand-like polymer carbon nitride, in this work to resolve these problems and enhance the photocatalytic activity. The PHE activity was intimately related to MnS compositions. A maximum hydrogen evolution rate of 670.5 mu mol/g/h could be achieved over 5% MnS/D-PCN composite, almost 5 times the rate of D-PCN and 18.4 times higher than that pristine PCN. This high PHE activity of MnS/D-PCN was attributed to the following factors: defects effects and Z-scheme heterojunction. We found that defects sites, on one hand, were the docking sites of MnS through a linkage to bridging the MnS and defected PCN, which offered an efficient spatial transfer path for electron-hole pairs at the interface, on the other hand, acted as the hydrogen evolving centers gathering the excited photoelectrons from D-PCN and MnS. Furthermore, Z-scheme pathway greatly enhanced the photoexcited charge separation due to their enormous driving force in internal electric field of p-n heterojunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available