4.8 Article

Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 282, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119600

Keywords

CO2 reduction; Photocatalysis; Z-scheme; Ternary heterojunction; Methanol

Funding

  1. Guangdong High-level Personnel of Special Support Program-Outstanding Young Scholar in Science and Technology Innovation [2015TQ01C543]
  2. National Natural Science Foundation of China [51776094, 91963129]
  3. Guangdong Provincial Key Laboratory of Energy Materials for Electric Power [2018B030322001]
  4. Basic Research Project of Science and Technology Plan of Shenzhen [JCYJ20180504165655180]
  5. SUSTech Core Research Facilities
  6. Southern University of Science and Technology [2019X33, 2019S11, 2019G03]

Ask authors/readers for more resources

The study demonstrates that the ZCS/Au@CN heterojunction photocatalyst can efficiently convert CO2 into methanol with a high rate. AuNPs play an important role in enhancing the reduction ability of CO2 through rapid electron extraction. This work showcases the potential of using ternary composites to improve the efficiency of photocatalytic CO2 reduction.
Converting CO2 into renewable solar fuel using photocatalysts is one of the most ideal solutions for environmental challenges and energy crises. Here, the solid-solid Z-scheme Zn0.5Cd0.5S/Au@g-C3N4 (ZCS/Au@CN) heterojunction showed improved photocatalytic reduction of CO2 due to the enhanced visible light consumption, fast dissolution of photogenerated electron-hole pairs, quick interfacial transfer process of electrons, and enlarged surface area. Under visible-light irradiation, methanol (CH3OH) was produced at a rate of 1.31 mu mol h(-1) g(-1) over ZCS/Au@CN, roughly 43.6 and 32.7 folds higher than those observed over pure ZCS and CN samples. The analytical characterization results verified the role of AuNPs as an electron mediator, which improved the rapid extraction of photoinduced electrons and enhanced the reduction ability of CO2. This work not only demonstrates a facile photodeposition assisted hydrothermal method for fabrication of ZnxCd1-xS/Au@C3N4 heterojunction composite photocatalysts but also demonstrates the possibility of utilizing ternary composites for enhanced photocatalytic reduction of CO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available