4.7 Article

Activation of Endogenous H2S Biosynthesis or Supplementation with Exogenous H2S Enhances Adipose Tissue Adipogenesis and Preserves Adipocyte Physiology in Humans

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 35, Issue 5, Pages 319-340

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2020.8206

Keywords

adipogenesis; adipose tissue; hydrogen sulfide; obesity; protein persulfidation

Funding

  1. Instituto de Salud Carlos III from Spain [PI15/01934, PI16/01173, PI19/01712]
  2. VII Spanish Diabetes Association grants
  3. FEDER through the Agencia Estatal de Investigacion grant [BIO2016-76633-P]

Ask authors/readers for more resources

This study found that activation of exogenous or endogenous H2S biosynthesis can increase adipogenesis, improve insulin action, and reduce adipose tissue senescence and inflammation. The expression of H2S-synthesising enzymes in adipose tissue was significantly decreased in obese individuals, associated with decreased adipogenesis and increased inflammation markers. Weight-loss interventions improved the expression of H2S biosynthesis-related genes.
Aims: To investigate the impact of exogenous hydrogen sulfide (H2S) and its endogenous biosynthesis on human adipocytes and adipose tissue in the context of obesity and insulin resistance. Results: Experiments in human adipose tissue explants and in isolated preadipocytes demonstrated that exogenous H2S or the activation of endogenous H2S biosynthesis resulted in increased adipogenesis, insulin action, sirtuin deacetylase, and PPAR gamma transcriptional activity, whereas chemical inhibition and gene knockdown of each enzyme generating H2S (CTH, CBS, MPST) led to altered adipocyte differentiation, cellular senescence, and increased inflammation. In agreement with these experimental data, visceral and subcutaneous adipose tissue expression of H2S-synthesising enzymes was significantly reduced in morbidly obese subjects in association with attenuated adipogenesis and increased markers of adipose tissue inflammation and senescence. Interestingly, weight-loss interventions (including bariatric surgery or diet/exercise) improved the expression of H2S biosynthesis-related genes. In human preadipocytes, the expression of CTH, CBS, and MPST genes and H2S production were dramatically increased during adipocyte differentiation. More importantly, the adipocyte proteome exhibiting persulfidation was characterized, disclosing that different proteins involved in fatty acid and lipid metabolism, the citrate cycle, insulin signaling, several adipokines, and PPAR, experienced the most dramatic persulfidation (85-98%). Innovation: No previous studies investigated the impact of H2S on human adipose tissue. This study suggests that the potentiation of adipose tissue H2S biosynthesis is a possible therapeutic approach to improve adipose tissue dysfunction in patients with obesity and insulin resistance. Conclusion: Altogether, these data supported the relevance of H2S biosynthesis in the modulation of human adipocyte physiology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available