4.8 Article

Strong Chemical Interaction between Lithium Polysulfides and Flame-Retardant Polyphosphazene for Lithium-Sulfur Batteries with Enhanced Safety and Electrochemical Performance

Journal

ADVANCED MATERIALS
Volume 33, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202007549

Keywords

flame-retardant; lithium-sulfur batteries; polyphosphazene; safety; strong chemical interaction

Funding

  1. National Natural Science Foundation of China [51772156, 51872144]
  2. Natural Science Foundation of Jiangsu Province [BK20180019]
  3. Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials [JSKC20021]
  4. PAPD of Jiangsu
  5. Co-constructing Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment by Jiangsu Province
  6. Ministry of Education

Ask authors/readers for more resources

The study introduces a flame-retardant polyphosphazene-modified holey graphene/carbonized cellulose paper as a multifunctional interlayer in Li-S batteries, which effectively traps LiPS, increases the diffusion coefficient for lithium ions, inhibits shuttling effect of LiPS, reduces flammability of the sulfur cathode and electrolyte, and enhances safety of Li-S batteries.
The shuttle effect of lithium polysulfides (LiPS) and potential safety hazard caused by the burning of flammable organic electrolytes, sulfur cathode, and lithium anode seriously limit the practical application of lithium-sulfur (Li-S) batteries. Here, a flame-retardant polyphosphazene (PPZ) covalently modified holey graphene/carbonized cellulose paper is reported as a multifunctional interlayer in Li-S batteries. During the discharge/charge process, once the LiPS are generated, the as-obtained flame-retardant interlayer traps them immediately through the nucleophilic substitution reaction between PPZ and LiPS, effectively inhibiting the shuttling effect of LiPS to enhance the cycle stability of Li-S batteries. Meanwhile, this strong chemical interaction increases the diffusion coefficient for lithium ions, accelerating the lithiation reaction with complete inversion. Moreover, the as-obtained interlayer can be used as a fresh 3D current collector to establish a flame-retardant vice-electrode, which can trap dissolved sulfur and absorb a large amount of electrolyte, prominently bringing down the flammability of the sulfur cathode and electrolyte to improve the safety of Li-S batteries. This work provides a viable strategy for using PPZ-based materials as strong chemical scavengers for LiPS and a flame-retardant interlayer toward next-generation Li-S batteries with enhanced safety and electrochemical performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available