4.8 Article

Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries

Journal

ADVANCED MATERIALS
Volume 33, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202007559

Keywords

aqueous zinc-ion batteries; flexible batteries; freeze tolerance; hydrogel electrolytes; zinc dendrites

Funding

  1. National Natural Science Foundation of China [51902165]
  2. Science and Technology Project of Nanchang [2017-SJSYS-008]
  3. Program of High-Level Talents in Six Industries of Jiangsu Province [XCL-040]
  4. Jiangsu Specially-Appointed Professor Program

Ask authors/readers for more resources

A all-round hydrogel electrolyte was developed using cotton, tetraethyl orthosilicate, and glycerol, exhibiting high ionic conductivity and excellent mechanical properties.
Flexible energy storage devices are at the forefront of next-generation power supplies, one of the most important components of which is the gel electrolyte. However, shortcomings exist, more or less, for all the currently developed hydrogel electrolytes. Herein, a facile and cost-effective method is developed to construct an all-round hydrogel electrolyte by using cotton as the raw material, tetraethyl orthosilicate as the crosslinker, and glycerol as the antifreezing agent. The obtained hydrogel electrolyte has high ionic conductivity, excellent mechanical properties (e.g., high tensile strength and elasticity), ultralow freezing point, good self-healing ability, high adhesion, and good heat-resistance ability. Remarkably, this hydrogel electrolyte can provide a record-breaking high ionic conductivity of 19.4 mS cm(-1) at -40 degrees C compared with previously reported aqueous electrolytes for zinc-ion batteries. In addition, this hydrogel electrolyte can significantly inhibit zinc dendritic growth and parasitic side reactions from -40 to 60 degrees C. With this hydrogel electrolyte, a flexible quasi-solid-state Zn-MnO2 battery is assembled, which shows remarkable energy densities from -40 to 60 degrees C. The battery also exhibits outstanding cycling durability and has high endurance under various harsh conditions. This work opens new opportunities for the development of hydrogel electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available