4.8 Article

Position-Controlled Functionalization of Vacancies in Silicon by Single-Ion Implanted Germanium Atoms

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202011175

Keywords

Ge‐ vacancy complex; Hubbard model; point defects; quantum transport; single‐ ion implantation

Funding

  1. NFFA infrastructure [517]
  2. CINECA [HP10C3S9Z0]
  3. JSPS, Ministero Affare Esteri, MEXT
  4. CNR Short Mobility program

Ask authors/readers for more resources

Research explores quantum transport through Ge-vacancy complexes in silicon and identifies anomalous behavior compared to conventional dopants. The combination of a model based on ab initio results with single-ion implantation method offers potential for creating spatially controllable individual defects in silicon for applications in quantum information technology.
Special point defects in semiconductors have been envisioned as suitable components for quantum-information technology. The identification of new deep centers in silicon that can be easily activated and controlled is a main target of the research in the field. Vacancy-related complexes are suitable to provide deep electronic levels but they are hard to control spatially. With the spirit of investigating solid state devices with intentional vacancy-related defects at controlled position, the functionalization of silicon vacancies is reported on here by implanting Ge atoms through single-ion implantation, producing Ge-vacancy (GeV) complexes. The quantum transport through an array of GeV complexes in a silicon-based transistor is investigated. By exploiting a model based on an extended Hubbard Hamiltonian derived from ab initio results, anomalous activation energy values of the thermally activated conductance of both quasi-localized and delocalized many-body states are obtained, compared to conventional dopants. Such states are identified, forming the upper Hubbard band, as responsible for the experimental sub-threshold transport across the transistor. The combination of the model with the single-ion implantation method enables future research for the engineering of GeV complexes toward the creation of spatially controllable individual defects in silicon for applications in quantum information technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available