4.7 Article

Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy

Journal

ACTA MATERIALIA
Volume 204, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.11.012

Keywords

FeCrNi; Medium-entropy and high-entropy alloys; Deformation twinning; Critical twinning stress; Austenitic stainless steels

Funding

  1. German Research Foundation (DFG) [SFB/TR 103]

Ask authors/readers for more resources

Investigations on equiatomic CrFeNi medium-entropy alloy reveal stable face-centered cubic solid solution properties at specific temperatures. Cold-working and recrystallization processes can produce different grain sizes, showing varied mechanical properties and deformation mechanisms influenced by temperature. Analysis of deformation processes at different strains indicates a combination of dislocation glide and twinning mechanisms.
An equiatomic CrFeNi medium-entropy alloy (MEA) that constitutes a cornerstone of austenitic stainless steels and Fe-based superalloys is investigated. Anneals at various temperatures revealed that CrFeNi forms a stable face-centered cubic (FCC) solid solution above similar to 1223 K. Based on this result, this alloy was cold-worked and recrystallized between 1273 K and 1473 K to produce different grain sizes. Compression tests were carried out at 293 K to investigate grain boundary strengthening (Hall-Petch slope: 966 MPa mu m(1/2)) and this contribution was then subtracted from the overall strength to reveal the intrinsic uniaxial lattice strength (80 MPa). Additional compression and tensile tests were performed between 77 K and 873 K to study the effect of temperature on mechanical properties and deformation mechanisms. Ductility, yield and ultimate tensile strengths increased with decreasing temperature. To reveal the active deformation mechanisms in CrFeNi with the coarsest grain size (160 mu m), tensile tests at 77 K and 293 K were interrupted at different strains followed by transmission electron microscopy analyses. In all cases, the deformation was accommodated by dislocation glide at low strains, while twinning additionally occurred above a critical resolved shear stress of 165 MPa, which was roughly temperature independent. This value compares well with predictions (180 MPa) based on the Kibey's model for twin nucleation. Moreover, the fact that this value is roughly temperature-independent is also consistent with the Kibey's model since the twin nucleation barrier (unstable twin stacking fault energy) of FCC metals and alloys does not vary significantly with temperature. (c) 2020 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available