4.7 Article

A micromechanical analysis of intergranular stress corrosion cracking of an irradiated austenitic stainless steel

Journal

ACTA MATERIALIA
Volume 204, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.116482

Keywords

Stress corrosion cracking; Intergranular; Austenitic stainless steel; EBSD; FFT

Funding

  1. Slovenian Research Agency [P2-0026]
  2. French Atomic Energy Commission

Ask authors/readers for more resources

This study investigates the micromechanical analysis of irradiated austenitic stainless steel to assess local cracking conditions and crack initiation criteria. Statistical analysis and micromechanical simulations show that cracking tends to occur for grain boundary normals aligned with the mechanical loading axis. The strengths and weaknesses of this micromechanical approach are discussed based on the correlation between experimental and simulated results.
Irradiation Assisted Stress Corrosion Cracking (IASCC) is a material degradation phenomenon affecting austenitic stainless steels used in nuclear Pressurized Water Reactors (PWR), leading to the initiation and propagation of intergranular cracks. Such phenomenon belongs to the broader class of InterGranular Stress Corrosion Cracking (IGSCC). A micromechanical analysis of IGSCC of an irradiated austenitic stainless steel is performed in this study to assess local cracking conditions. A 304L proton irradiated sample tested in PWR environment and showing intergranular cracking is investigated. Serial sectioning, Electron BackScatter Diffraction (EBSD) and a two-step misalignment procedure are performed to reconstruct the 3D microstructure over an extended volume, to assess statistically cracking criteria. A methodology is also developed to compute Grain Boundary (GB) normal orientations based on the EBSD measurements. The statistical analysis shows that cracking occurs preferentially for GB normals aligned with the mechanical loading axis, but also for low values of the Luster-Morris slip transmission parameter. Micromechanical simulations based on the reconstructed 3D microstructure, FFT-based solver and crystal plasticity constitutive equations modified to account for slip transmission at grain boundaries are finally performed. These simulations rationalize the correlation obtained experimentally into a single stress-based criterion. The actual strengths and weaknesses of such micromechanical approach are discussed. (c) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available