4.8 Article

High Concentration of Ti3C2Tx MXene in Organic Solvent

Journal

ACS NANO
Volume 15, Issue 3, Pages 5249-5262

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c10671

Keywords

MXene; organic solvent; highly concentrated dispersion; antioxidation; tuned microenvironment method

Funding

  1. National Natural Science Foundation of China [21972093]
  2. Ministry of Education of China [PCSIRT_IRT_16R49]
  3. Shanghai Engineering Research Center of Green Energy Chemical Engineering [18DZ2254200]

Ask authors/readers for more resources

MXenes are widely studied as two-dimensional materials due to their properties, but dispersing MXene materials in organic solvents poses a significant challenge. The tuned microenvironment method (TMM) has been developed to prepare highly concentrated Ti3C2Tx organic solvent dispersion efficiently. The method allows for clean, uniform, and large-size Ti3C2Tx nanosheets to be dispersed in organic solvents with excellent oxidation resistance.
MXenes are currently one of the most widely studied two-dimensional materials due to their properties. However, obtaining highly dispersed MXene materials in organic solvent remains a significant challenge for current research. Here, we have developed a method called the tuned microenvironment method (TMM) to prepare a highly concentrated Ti3C2Tx organic solvent dispersion by tuning the microenvironment of Ti3C2Tx. The as-proposed TMM is a simple and efficient approach, as Ti3C2Tx can be dispersed in N,N-dimethylformamide and other solvents by stirring and shaking for a short time, without the need for a sonication step. The delaminated single-layer MXene yield can reach 90% or greater, and a large-scale synthesis has also been demonstrated with TMM by delaminating 30 g of multilayer Ti3C2Tx raw powder in a one-pot synthesis. The synthesized Ti3C2Tx nanosheets dispersed in an organic solvent possess a clean surface, uniform thickness, and large size. The Ti3C2Tx dispersed in an organic solvent exhibits excellent oxidation resistance even under aerobic conditions at room temperature. Through the experimental investigation, the successful preparation of a highly concentrated Ti3C2Tx organic solvent dispersion via TMM can be attributed to the following factors: (1) the intercalation of the cation can lead to the change in the hydrophobicity and surface functionalization of the material; (2) proper solvent properties are required in order to disperse MXene nanosheets well. To demonstrate the applicability of the highly concentrated Ti3C2Tx organic solvent dispersion, a composite fiber with excellent electrical conductivity is prepared via the wet-spinning of a Ti3C2Tx (dispersed in DMF) and polyacrylonitrile mixture. Finally, various types of MXenes, such as Nb2CTx, Nb4C3Tx, and Mo2Ti2C3Tx, can also be prepared as highly concentrated MXene organic solvent dispersions via TMM, which proves the universality of this method. Thus, it is expected that this work demonstrates promising potential in the research of the MXene material family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available