4.8 Article

Self-Assembled Hexagonal Superparamagnetic Cone Structures for Fabrication of Cell Cluster Arrays

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 9, Pages 10667-10673

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c17890

Keywords

ferrofluid; self-assembled; hexagonal superparamagnetic cone structures; cell clusters array

Ask authors/readers for more resources

In this study, hexagonal arrays of cell clusters were fabricated using self-assembled superparamagnetic cone structures. These structures effectively captured and arranged magnetically labeled cells, forming cell cluster arrays. By minimizing the system's total energy, the growth and migration of cells were restricted by the local magnetic field gradient caused by the hexagonal superparamagnetic cones.
In this study, we demonstrated that arrays of cell clusters can be fabricated by self-assembled hexagonal superparamagnetic cone structures. When a strong out-of-plane magnetic field was applied to the ferrofluid on a glass substrate, it will induce the magnetic poles on the upper/lower surfaces of the continuous ferrofluid to increase the magnetostatic energy. The ferrofluid will then experience hydrodynamic instability and be split into small droplets with cone structures because of the compromising surface tension energy and magnetostatic energy to minimize the system's total energy. Furthermore, the ferrofluid cones were orderly self-assembled into hexagonal arrays to reach the lowest energy state. After dehydration of these liquid cones to form solid cones, polydimethylsiloxane was cast to fix the arrangement of hexagonal superparamagnetic cone structures and prevent the leakage of magnetic nanoparticles. The U-343 human neuronal glioblastoma cells were labeled with magnetic nanoparticles through endocytosis in co-culture with a ferrofluid. The number of magnetic nanoparticles internalized was (4.2 +/- 0.84) x 10(6) per cell by the cell magnetophoresis analysis. These magnetically labeled cells were attracted and captured by hexagonal superparamagnetic cone structures to form cell cluster arrays. As a function of the solid cone size, the number of cells captured by each hexagonal superparamagnetic cone structure was increased from 48 to 126 under a 2000 G out-of-plane magnetic field. The local magnetic field gradient of the hexagonal superparamagnetic cone was 117.0-140.9 G/mm from the cell magnetophoresis. When an external magnetic field was applied, we observed that the number of protrusions of the cell edge decreased from the fluorescence images. It showed that the local magnetic field gradient caused by the hexagonal superparamagnetic cones restricted the cell growth and migration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available