4.8 Article

Porous Polyamide Skeleton-Reinforced Solid-State Electrolyte: Enhanced Flexibility, Safety, and Electrochemical Performance

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 9, Pages 11018-11025

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c00084

Keywords

solid-state battery; flexible electrolyte; polyamide framework; lithium-ion battery; ionic conductivity

Funding

  1. National Natural Science Foundation of China [U20A20126]

Ask authors/readers for more resources

Researchers have designed a solid-state electrolyte with flexibility and robustness to ensure stable lithium cycling and enhanced ionic conductivity. The electrolyte exhibits outstanding cycling performance in solid-state LiFePO4//Li batteries, with a Young's modulus of up to 1030 MPa, and can work well in harsh environments.
The growing demand for safer lithium-ion batteries draws researchers' attention to solid-state electrolytes. In general, a desired electrolyte should be flexible, mechanically strong, and with high ionic conductivity. A solid-state electrolyte with a polymer as a matrix seems to be able to meet these demands. However, a pure polymer electrolyte lacks sufficient strength to suppress Li dendrites, and hybrids with ceramic components often lead to poor flexibility, both far from satisfactory. Herein, a solid-state electrolyte is designed by employing a mass-produced porous polyamide (PA) film infiltrated with polyethylene oxide (PEO)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The PA/PEO/LiTFSI electrolyte is flexible but robust with a Young's modulus of up to 1030 MPa, ensuring steady Li//Li cycling without short circuit for more than 400 h. Also, the porous structure of the PA film decreases the crystalline regions and effectively enhances the ionic conductivity (2.05 x 10(-4) S cm(-1) at 30 degrees C). When cycled at 1C, solid-state LiFePO4//Li batteries assembled with the PA/PEO/LiTFSI electrolyte retain 82% capacity after 300 cycles (60 degrees C). In addition, a flexible LiFePO4//PA/PEO/LiTFSI//Li pouch cell can also work well in harsh operating environments, such as being folded, crimped, and pierced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available