4.8 Article

Charge Transport Phenomena in Heterojunction Photocatalysts: The WO3/TiO2 System as an Archetypical Model

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 8, Pages 9781-9793

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c19692

Keywords

heterojunction photocatalyst; charge transport; metal oxide semiconductors; WO3/TiO2

Funding

  1. EPSRC [EP/R034540/1]
  2. Mitacs Globalink Research Award
  3. NSERC of Canada
  4. FQRNT of Quebec
  5. Imperial College
  6. EPSRC
  7. Royal Society [RSG\R1\180434]
  8. Grantham Institute
  9. Energy Futures Lab

Ask authors/readers for more resources

Recent studies have shown that nanostructured core-shell WO3/TiO2 (WT) heterojunctions can efficiently degrade organic pollutants, with significantly enhanced electron and hole recombination lifetimes and effective transfer between WO3 and TiO2. The combination of theoretical calculations and experimental measures provides insights into the superior photocatalytic efficiency and critical charge transfer processes in this model heterojunction photocatalyst.
Recent studies have demonstrated the high efficiency through which nanostructured core-shell WO3/TiO2 (WT) heterojunctions can photocatalytically degrade model organic pollutants (stearic acid, QE approximate to 18% @ lambda = 365 nm), and as such, has varied potential environmental and antimicrobial applications. The key motivation herein is to connect theoretical calculations of charge transport phenomena, with experimental measures of charge carrier behavior using transient absorption spectroscopy (TAS), to develop a fundamental understanding of how such WT heterojunctions achieve high photocatalytic efficiency (in comparison to standalone WO3 and TiO2 photocatalysts). This work reveals an order of magnitude enhancement in electron and hole recombination lifetimes, respectively located in the TiO2 and WO3 sides, when an optimally designed WT heterojunction photocatalyst operates under UV excitation. This observation is further supported by our computationally captured details of conduction band and valence band processes, identified as (i) dominant electron transfer from WO3 to TiO2 via the diffusion of excess electrons; and (ii) dominant hole transfer from TiO2 to WO3 via thermionic emission over the valence band edge. Simultaneously, our combined theoretical and experimental study offers a time-resolved understanding of what occurs on the microto milliseconds (mu s-ms) time scale in this archetypical photocatalytic heterojunction. At the microsecond time scale, a portion of the accumulated holes in WO3 contribute to the depopulation of W5+ polaronic states, whereas the remaining accumulated holes in WO3 are separated from adjacent electrons in TiO2 up to 3 ms after photoexcitation. The presence of these exceptionally long-lived photogenerated carriers, dynamically separated by the WT heterojunction, is the origin of the superior photocatalytic efficiency displayed by this system (in the degradation of stearic acid). Consequently, our combined computational and experimental approach delivers a robust understanding of the direction of charge separation along with critical time-resolved insights into the evolution of charge transport phenomena in this model heterojunction photocatalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available