4.8 Review

Time and Pot Economy in Total Synthesis

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 54, Issue 6, Pages 1385-1398

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.0c00803

Keywords

-

Funding

  1. JSPS KAKENHI [JP19H05630, JP20H04801]

Ask authors/readers for more resources

Chemists aim to synthesize organic molecules rapidly to study their physical or biological properties, with concepts like time economy, step economy, and redox economy being crucial. One-pot reactions are useful in shortening synthesis time, increasing yield, and reducing chemical waste. The successful synthesis of natural products and medicines highlights the importance of pot and time economy, with efficient strategies such as using organocatalysts in one-pot reactions.
We would all like to make or obtain the materials or products we want as soon as possible. This is human nature. This is true also for chemists in the synthesis of organic molecules. All chemists would like to make their target molecules as soon as possible, particularly when their interest is in the physical or biological properties of those molecules. As demonstrated by today's COVID-19 (SARS-CoV-2) pandemic, rapid synthesis is also crucial to enable chemists to deliver effective therapeutic agents to the community. Several concepts are currently well-accepted as important for achieving this: atom economy, step economy, and redox economy. Considering the importance of synthesizing organic molecules rapidly, I recently proposed adding the concept of time economy. In a multisep synthesis, each step has to be completed within a short period of time to make the desired molecule rapidly. The development of rapid reactions is important but also insufficient. After each step, frequent and repetitive workup operations such as quenching the reaction, extraction, separation of water and organic phases, drying the organic phase, filtration, evaporation, and purification may be required, and the time necessary for these processing operations must be taken into account. Indeed, some of the most time-consuming operations in most syntheses are the purification stages. On the other hand, one-pot reactions are processes in which several sequential reactions are conducted in a single reaction vessel, which avoids the need to purify intermediates. One-pot reactions are a useful way to shorten the total synthesis time, and the approach generally leads to an increase in the yield and a reduction in the amount of chemical waste formed. Thus, I also propose the importance of pot economy. On the basis of these concepts of time and pot economy, we have accomplished efficient syntheses of several natural products and medicines. The key to the success of these syntheses is the use of diphenylprolinol silyl ether as an effective catalyst in a one-pot reaction, in which it does not disturb the subsequent reactions. Our strategy is (1) to construct the chiral key skeletons and/or key components of natural products and medicines directly using organocatalyst-mediated one-pot reactions and (2) to conduct the subsequent transformations to the final molecules in a small number of pots utilizing the internal quench method. By means of this strategy, PGE(1) methyl ester, estradiol methyl ether, and clinprost were synthesized in three, five, and seven pots, respectively. Furthermore, (-)-oseltamivir, ABT-341, baclofen, and Corey lactone were synthesized in a single reaction vessel. Further optimization of the reactions in terms of time economy allowed (-)-oseltamivir and Corey lactone to be synthesized within 60 and 152 min, respectively. These syntheses will be highlighted as case studies. Although the organocatalyst is a key compound in this Account, pot- and time-economical syntheses can be expanded to organometallic chemistry and, indeed, to organic chemistry in general.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available