4.5 Article

Some Critical Remarks about Mathematical Model Used for the Description of Transport Kinetics in Polymer Inclusion Membrane Systems

Journal

MEMBRANES
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/membranes10120411

Keywords

membrane transport models; kinetic models; model fitting; polymer inclusion membrane transport

Funding

  1. Excellence Initiative-Debuts (2nd edition) under the Excellence Initiative-Research University programme of Nicolaus Copernicus University in Torun

Ask authors/readers for more resources

Two kinetic models which are applied for the description of metal ion transport in polymer inclusion membrane (PIM) systems are presented and compared. The models were fitted to the real experimental data of Zn(II), Cd(II), Cu(II), and Pb(II) simultaneous transport through PIM with di-(2-ethylhexyl)phosphoric acid (D2EHPA) as a carrier, o-nitrophenyl octyl ether (NPOE) as a plasticizer, and cellulose triacetate (CTA) as a polymer matrix. The selected membrane was composed of 43 wt. % D2EHPA, 19 wt. % NPOE, and 38 wt. % CTA. The results indicated that the calculated initial fluxes (from 2 x 10(-11) up to 9 x 10(-10) mol/cm(2)s) are similar to the values observed by other authors in systems operating under similar conditions. It was found that one of the most frequently applied models based on an equation similar to the first-order chemical reaction equation leads to abnormal distribution of residuals. It was also found that application of this model causes some problems with curve fitting and leads to the underestimation of permeability coefficients and initial maximum fluxes. Therefore, a new model has been proposed to describe the transport kinetics in PIM systems. This new model, based on an equation similar to the first-order chemical reaction equation with equilibrium, was successfully applied. The fit of this model to the experimental data is much better and makes it possible to determine more precisely the initial maximum flux as the parameter describing the transport efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available