4.7 Article

Comparison of Sulfur Cathode Reactions between a Concentrated Liquid Electrolyte System and a Solid-State Electrolyte System by Soft X-Ray Absorption Spectroscopy

Journal

ACS APPLIED ENERGY MATERIALS
Volume 4, Issue 1, Pages 186-193

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.0c02063

Keywords

lithium-sulfur battery; conventional electrolyte; concentrated electrolyte; solid-state electrolyte; X-ray absorption spectroscopy

Funding

  1. Japan Science and Technology Agency (JST)
  2. Advanced Low Carbon Technology Research and Development Program (ALCA)
  3. Specially Promoted Research for Innovative Next Generation Batteries (SPRING) Project [JPMJAL1301]

Ask authors/readers for more resources

By studying the reaction mechanism of sulfide cathodes in different electrolyte systems, it was found that the reduction products of sulfur cathodes vary in different electrolytes, thereby affecting electrochemical properties such as discharge voltage.
Sulfur is one of the promising next-generation cathode materials because of its low cost and high theoretical gravimetric capacity. However, the reaction mechanism of the sulfur cathode is largely influenced by the electrolyte and the intermediate sulfur species during the first discharge process has not been quantitatively explored in different electrolytes. In this study, we elucidated the reaction mechanism of sulfide cathodes by using three different electrolyte systems, viz., a conventional liquid electrolyte [LiPF6/ethylene carbonate (EC)/ethylene-methyl carbonate (EMC)], a concentrated liquid electrolyte [lithium bis(trifluorosulfonyl)amide (LiTFSA)/tetraglyme (G4):1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE)], and a solid-state electrolyte (Li3PS4). Soft X-ray absorption spectroscopy was used to examine the reaction mechanism of the sulfur cathode in the liquid and solid-state electrolytes during the first discharge process. In the conventional electrolyte, the sulfur cathode was reduced to long-chain polysulfide (S-6(2-)) during the first discharge process, and the polysulfide subsequently dissolved into the electrolyte. In the concentrated electrolyte, the sulfur cathode was reduced to midchain polysulfide (S-4(2-)) at the initial stage of the first discharge process and then reduced to short-chain polysulfide (S-2(2-)) and Li2S, followed by the formation of long-chain polysulfide (S-6(2-)). In the solid-state electrolyte, the sulfur cathode was reduced to long-chain polysulfide (S-6(2-)) at the initial stage of the first discharge process and was gradually reduced to mid-chain polysulfide (S-4(2-)), short-chain polysulfide (S-2(2-)), and Li2S. The differences in these reaction pathways govern electrochemical properties such as the difference in discharge voltage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available