4.7 Article

Superwetting B4C bilayer foam for high cost-performance solar water purification

Journal

MATERIALS TODAY ENERGY
Volume 18, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2020.100498

Keywords

Boron carbide; Absorber; Hierarchical network; Solar steam; Seawater desalination; Wastewater purification

Funding

  1. Hong Kong Innovation and Technology Commission [ITS/219/19]
  2. City University of Hong Kong [9667160, 9667179]

Ask authors/readers for more resources

Solar water evaporation holds great promising for future seawater desalination and wastewater purification via solar energy harvesting and efficient steam generation. While many performance advances have been achieved, up to now the low cost-performance remains a serious hindrance to practical applications. To overcome the limitations, herein we developed a boron carbide bilayer foam (BCBF) based solar evaporator to achieve a record high cost-effectiveness on seawater desalination and wastewater purification. Via integrating full-solar absorbing boron carbide into a porous PVA framework, the BCBF achieves a good hydrophilic wettability, heat-shielding and solar-thermal conversion to offer a high evaporation rate as high as 2.8 kg/m(2)/h with 93% solar evaporation efficiency under 1 sunlight radiation. Prepared in one step using commercially available low-cost raw materials, the BCBF evaporator is demonstrated to possess an ultra-high cost-effectiveness of 778 g/h/$, far beyond previously reported solar evaporation systems. Practical freshwater production from seawater and multiple wastewaters, with high stability under extreme conditions were also demonstrated. This work suggests a good performance and highly cost-effective solar evaporator for practical water purification. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available