4.8 Article

Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries

Journal

ENERGY STORAGE MATERIALS
Volume 34, Issue -, Pages 388-416

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2020.09.016

Keywords

Lithium battery; Solid electrolyte; Solid state battery; Composite electrolyte

Funding

  1. National Key R&D Program of China [2018YFB0104300]
  2. National Natural Science Foundation of China [51772241]
  3. Fundamental Research Funds for the Central Universities [ZRZD2017004]

Ask authors/readers for more resources

All-solid-state lithium batteries (ASSLBs) are expected to replace traditional lithium-ion batteries with their excellent safety and energy density; Organic-inorganic composite solid electrolytes (O-ICSEs) show great potential in promoting commercialization by balancing electrochemical and mechanical properties; Recent research progress on O-ICSEs based on polyethylene oxide (PEO), polyacrylonitrile (PAN) and polycarbonate matrix has focused on fillers types, structural designs and performance parameters.
With excellent safety and potentially high energy density, all-solid-state lithium batteries (ASSLBs) are expected to meet the needs of large-scale energy storage applications, and widely regarded as the next-generation battery technology to replace traditional lithium-ion batteries (LIBs). As one of the most important components in ASSLBs, solid-state electrolytes (SSEs) are the key to promoting the commercialization of ASSLBs. Ideal SSEs should at least possess excellent mechanical and electrochemical properties to enable ASSLBs to operate safely and stably for a long time at a relatively high rate. Unfortunately, solid polymer electrolytes (SPEs) and inorganic solid electrolytes (ISEs) are excluded because of their significant deficiency in electrochemical or mechanical properties. In contrast, organic-inorganic composite solid electrolytes (O-ICSEs) derived from incorporating inorganic fillers into SPEs can well balance the two properties through the synergy between the components, which are the most promising candidates for ASSLBs. Therefore, a timely summary of the latest research progress in the field of O-ICSEs is of great significance for designing O-ICSEs with better performance and early realizing the commercialization of ASSLBs. In this review, the enhancement mechanisms of the electrochemical performance for O-ICSEs are firstly discussed in detail, and the basic characteristics of effective fillers are determined. Then the latest research progress in recent five years of O-ICSEs based on polyethylene oxide (PEO), polyacrylonitrile (PAN) and polycarbonate matrix are highlighted, covering various fillers types, rational structural designs and main performance parameters. Finally, the existing problems and future research directions of O-ICSEs are summarized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available