4.7 Review

Integrating Air Quality and Public Health Benefits in US Decarbonization Strategies

Journal

FRONTIERS IN PUBLIC HEALTH
Volume 8, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpubh.2020.563358

Keywords

interdisciplinary; integrated assessment modeling; climate mitigation; electric vehicles (EV); renewable energy

Funding

  1. Joyce Foundation Environment Program
  2. Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison
  3. Wisconsin Alumni Research Foundation

Ask authors/readers for more resources

Research on air quality and human health co-benefits from climate mitigation strategies represents a growing area of policy-relevant scholarship. Compared to other aspects of climate and energy policy evaluation, however, there are still relatively few of these co-benefits analyses. This sparsity reflects a historical disconnect between research quantifying energy and climate, and research dealing with air quality and health. The air quality co-benefits of climate, clean energy, and transportation electrification policies are typically assessed with models spanning social, physical, chemical, and biological systems. This review article summarizes studies to date and presents methods used for these interdisciplinary analyses. Studies in the peer-reviewed literature (n = 26) have evaluated carbon pricing, renewable portfolio standards, energy efficiency, renewable energy deployment, and clean transportation. A number of major findings have emerged from these studies: [1] decarbonization strategies can reduce air pollution disproportionally on the most polluted days; [2] renewable energy deployment and climate policies offer the highest health and economic benefits in regions with greater reliance on coal generation; [3] monetized air quality health co-benefits can offset costs of climate policy implementation; [4] monetized co-benefits typically exceed the levelized cost of electricity (LCOE) of renewable energies; [5] Electric vehicle (EV) adoption generally improves air quality on peak pollution days, but can result in ozone dis-benefits in urban centers due to the titration of ozone with nitrogen oxides. Drawing from these published studies, we review the state of knowledge on climate co-benefits to air quality and health, identifying opportunities for policy action and further research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available