4.6 Review

Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres

Journal

DIAGNOSTICS
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/diagnostics11020165

Keywords

diabetes; neuropathy; peripheral neuropathy; distal sensory polyneuropathy; diabetic neuropathy; diabetic peripheral neuropathy; early detection; screening; diagnostics; point-of-care

Funding

  1. Pain Relief Foundation - University of Liverpool

Ask authors/readers for more resources

Diabetic peripheral neuropathy is a common complication of diabetes that significantly impacts quality of life and healthcare burden. Current screening methods for early detection of DPN have limitations, highlighting the need for further research and clinical practices to improve accuracy and early detection.
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available