4.6 Article

One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media

Journal

ELECTROCHIMICA ACTA
Volume 194, Issue -, Pages 161-167

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2016.02.002

Keywords

shell-core structure; boron and nitrogen co-doped graphitic carbon; nanodiamond; oxygen reduction reaction

Funding

  1. National Natural Science Foundation of China [51272226]
  2. Key Basic Research Program of Hebei Province of China [14961106D]

Ask authors/readers for more resources

Shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond (BN-C/ND) non-noble metal catalyst has been synthesized by a simple one-step heat-treatment of the mixture with nanodiamond, melamine, boric acid and FeCl3. In the process of the surface graphitization of nanodiamond with catalysis by FeCl3, B and N atoms from the decomposition of boric acid and melamine were directly introduced into the graphite lattice to form B, N co-doped graphitic carbon shell, while the core still retained the diamond structure. Electrochemical measurements of the BN-C/ND catalyst show much higher electrocatalytic activities towards oxygen reduction reaction (ORR) in alkaline medium than its analogues doped with B or N alone (B-C/ND or N-C/ND). The high catalytic activity of BN-C/ND is attributed to the synergetic effect caused by co-doping of C/ND with B and N. Meanwhile, the BN-C/ND exhibits an excellent electrochemical stability due to the special shell/core structure. There is almost no alteration occurred in the cyclic voltammetry measurements for BN-C/ND before and after 5000 cycles. All experimental results prove that the BN-C/ND may be exploited as a potentially efficient and inexpensive non-noble metal cathode catalyst for ORR to substitute Pt-based catalysts in fuel cells. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available