4.7 Article

Multi-year load growth-based optimal planning of grid-connected microgrid considering long-term load demand forecasting: A case study of Tehran, Iran

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.seta.2020.100827

Keywords

Optimal planning; microgrids (MGs); Multi-year load growth-based method artificial neural networks (ANNs); Load forecasting (LF); HOMER (Hybrid Optimization of Multiple Energy Resources) software

Ask authors/readers for more resources

Although much efforts have been devoted to the optimal design of the energy systems, there is a research gap about the multi-year load growth-based optimal planning of microgrids. This paper tries to fill such a research gap by developing a novel method for the optimal design of the grid-connected microgrids based on the long-term load demand forecasting. The multilayer perceptron artificial neural network is used for time-series load prediction. The impacts of the annual load growth are analyzed under various cases based on the consideration and determination methods of yearly load growth. The proposed method is applied to an actual microgrid in Tehran, Iran, using HOMER (Hybrid Optimization of Multiple Energy Resources) software. The load modeling's capabilities of HOMER software, as a well-known software for the optimal design of energy systems, are used, which have received less attention. Since most existing research works in Iran focused on the off-grid operating mode, the study of an actual microgrid under grid-connected operating mode is one of the most contributions of this paper. The comparison of the obtained results and other available methods illustrate the impacts of the adequately precise estimation of annual load growth in the design of energy systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available