4.7 Article

Histone Carbonylation Is a Redox-Regulated Epigenomic Mark That Accumulates with Obesity and Aging

Journal

ANTIOXIDANTS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/antiox9121210

Keywords

histone; carbonylation; adipose; epigenomics; 4-HNE (4-hydroxynonenal); 4-HHE (4-hydroxy hexenal); aging

Funding

  1. National Institutes of Health [T32 GM008347, R35 GM118029, R01 DK084669, R01 AG069819]
  2. Minnesota Agricultural Experiment Station

Ask authors/readers for more resources

Oxidative stress is a hallmark of metabolic disease, though the mechanisms that define this link are not fully understood. Irreversible modification of proteins by reactive lipid aldehydes (protein carbonylation) is a major consequence of oxidative stress in adipose tissue and the substrates and specificity of this modification are largely unexplored. Here we show that histones are avidly modified by 4-hydroxynonenal (4-HNE) in vitro and in vivo. Carbonylation of histones by 4-HNE increased with age in male flies and visceral fat depots of mice and was potentiated in genetic (ob/ob) and high-fat feeding models of obesity. Proteomic evaluation of in vitro 4-HNE- modified histones led to the identification of both Michael and Schiff base adducts. In contrast, mapping of sites in vivo from obese mice exclusively revealed Michael adducts. In total, we identified 11 sites of 4-hydroxy hexenal (4-HHE) and 10 sites of 4-HNE histone modification in visceral adipose tissue. In summary, these results characterize adipose histone carbonylation as a redox-linked epigenomic mark associated with metabolic disease and aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available