4.7 Article

Chronic Metabolic Acidosis Elicits Hypertension via Upregulation of Intrarenal Angiotensin II and Induction of Oxidative Stress

Journal

ANTIOXIDANTS
Volume 10, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/antiox10010002

Keywords

hypertension; metabolic acidosis; angiotensin II

Funding

  1. Blue Cross Blue Shield of Louisiana GRANT [JKK085-93143]
  2. Living Well Foundation [JKK024-253103]
  3. Institutional Development Award (IDeA) INBRE-LBRN Administrative Supplement grant [3P20GM103424-18S1]
  4. LBRN Pilot grant from NIH/NIGMS [P2O GM103424-18]

Ask authors/readers for more resources

This study found that chronic metabolic acidosis induced in Sprague Dawley rats led to sustained elevation in blood pressure and significant decrease in blood pH. Treatment with captopril/tempol resulted in a significant decrease in blood pressure, while spironolactone did not show the same effect. Induction of chronic acidosis may potentially be causative of hypertension, possibly through activation of intrarenal angiotensin II and induction of oxidative stress.
Chronic metabolic acidosis (CMA) can be a consequence of persistent hypertension but could potentially play a role in invoking hypertension. Currently, there is a scarcity of studies examining the outcome of induced chronic acidosis on blood pressure regulation. This study investigates CMA as a cause of hypertension. Chronic acidosis was induced in Sprague Dawley rats (100-150 g) by providing a weak acid solution of 0.28 M ammonium chloride (NH4Cl) in tap water for 8 weeks. To determine whether the rats were acidotic, blood pH was measured, while blood pressure (BP) was monitored by tail-cuff plethysmography weekly. Rats were divided into five groups: control, CMA, CMA +/- spironolactone, captopril, and tempol. Serum sodium and potassium; renal interstitial fluid (for Angiotensin II concentration); and kidney proximal tubules (for Na+/K+ ATPase- alpha 1 concentration) were analyzed. Reactive oxygen species (ROS) were detected in renal cortical homogenates using electron paramagnetic resonance (EPR). In the CMA rats, a sustained elevation in mean arterial pressure (MAP) associated with a significant decrease in blood pH was observed compared to that of control over the 8 weeks. A significant decrease in MAP was observed in acidotic rats treated with captopril/tempol, whereas spironolactone treatment caused no decrease in MAP as compared to that of the CMA group. The interstitial angiotensin II was increased in the CMA group but decreased in the CMA with captopril and tempol groups. In addition, the urinary sodium was decreased, and the serum sodium levels increased significantly in the CMA groups as compared to that of control. However, the acidotic groups with captopril and tempol showed reduced levels of serum sodium and an elevation in urinary sodium as compared to that of the CMA group. In addition, there was a significant increase in plasma renin and no change in plasma aldosterone in the CMA group with no significant differences in plasma renin or aldosterone observed during spironolactone, captopril, or tempol treatments. The increased expression of Na+/K+ ATPase-alpha 1 in the CMA group suggests that active transport of Na+ to the blood could be causative of the observed hypertension. Furthermore, the EPR analysis confirmed an elevation in superoxide (O-2(-)) radical levels in the CMA group, but the tempol/captopril treated acidotic groups showed less (O-2(-)) compared to that of either the CMA group or control. Taken together, our data suggest that induction of CMA could potentially be causative of hypertension, while the mechanisms underlying the increased BP could be through the activation of intrarenal Ang II and induction of oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available