4.7 Article

Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters

Journal

ANIMALS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/ani11010180

Keywords

essential oils; microencapsulation; rumen stability; in vitro incubation; fermentation parameters

Funding

  1. SILA s.r.l (Via Fermi Enrico n.1, Noale, VE, Italy)

Ask authors/readers for more resources

This study demonstrated the effectiveness of microencapsulation in protecting essential oils from ruminal degradation, with Olistat-G showing potential in altering rumen fermentation to reduce methane emissions.
Simple Summary Essential oils are an alternative for replacing antibiotics in animal feeds, but their volatile nature demands a high degree of stability. The aim of this study was to test the in vitro ruminal degradation of two different forms (free and microencapsulated) of three commercial products (mixtures of essential oils based on cinnamaldehyde, named Olistat-Cyn, Olistat-G, and Olistat-P) using an in vitro technique. The products were incubated in filter bags using an inoculum (buffer plus rumen fluid) for 48 h at 39 degrees C. It was found that the microencapsulation (matrix based on vegetable hydrogenated fatty acids) was efficient to protect essential oils from ruminal degradation because of the low disappearance of the microencapsulated essential oils in comparison to the free ones that were almost completely degraded. Olistat-G caused not only a significant decrease in the pH and the total protozoa number but also a significant increase in the total volatile fatty acids. As a conclusion, microencapsulation was found to be effective to ensure rumen by-pass and to be used as an additive in ruminant feeding. Among the essential oils tested, Olistat-G (mixture of cinnamaldehyde and vitamins) was capable of changing rumen fermentation, potentially reducing methane emissions. Essential oils (EOs) are generally considered as an alternative to antibiotics because of their antimicrobial properties. Despite their vast variety, their volatile nature poses hindrance on their use in animal feeds, which demands a high degree of stability. This study aimed at testing the susceptibility of three EOs (mixtures of EOs based on cinnamaldehyde, named Olistat-Cyn, Olistat-G, and Olistat-P) in two forms (free: fEOs; and microencapsulated: mEOs) to in vitro ruminal degradation using the Ankom Daisy(II) technique. The microencapsulation was made using a matrix based on vegetable hydrogenated fatty acids. Compared to the fEOs, which were completely degraded within 48 h of in vitro incubation, the mEOs showed a low ruminal disappearance. In comparison to the fermentation profile at 0 h, Olistat-G significantly decreased the pH and the total protozoa number after 48 h, while the total VFAs increased. However, the other EOs (Olistat-Cyn and Olistat-P) had no effect on the rumen fermentation parameters. In conclusion, the protection of EOs from ruminal degradation by microencapsulation was found to be very effective to ensure rumen by-pass. Among the EOs, Olistat-G was capable of changing rumen fermentation, potentially reducing methane emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available