4.8 Article

Sample spinning to mitigate polarization artifact and interstitial-vacancy imbalance in ion-beam irradiation

Journal

NPJ COMPUTATIONAL MATERIALS
Volume 6, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41524-020-00438-9

Keywords

-

Funding

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA02040100]
  2. China Scholarship Council
  3. US DOE Office of Nuclear Energy's NEUP Program [DE-NE0008827]
  4. National Natural Science Foundation of China [11975018, 11775254]
  5. National Magnetic Confinement Fusion Energy Research Project [2018YEF0308100]

Ask authors/readers for more resources

Accelerator-based ion-beam irradiation has been widely used to mimic the effects of neutron radiation damage in nuclear reactors. However, ion radiation is most often monodisperse in the incoming ions' momentum direction, leading to excessive polarization in defect distribution, while the scattering under neutron irradiation is often more isotropic and has less radiation-induced polarization. Mitigation of the excess-polarization as well as the damage non-uniformity artifact might be crucial for making the simulation of neutron radiation by ion-beam radiation more realistic. In this work, a general radiation polarization theory in treating radiation as external polar stimuli is established to understand the natural material responses in different contexts, and the possibility to correct the defect polarization artifact in ion-beam irradiation. Inspired by Magic Angle Spinning in Nuclear Magnetic Resonance, we present a precise sample spinning strategy to reduce the point-defect imbalance effect in ion-beam irradiation. It can be seen that with optimized surface inclination angle and the axis of sample rotation, the vacancy-interstitial population imbalance, as well as the damage profile non-uniformity in a designated region in the target are both reduced. It is estimated that sample spinning frequency on the order of kHz should be sufficient to scramble the ion momentum monodispersity for commonly taken ion fluxes and dose rates, which is experimentally feasible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available