4.8 Article

Millikelvin-resolved ambient thermography

Journal

SCIENCE ADVANCES
Volume 6, Issue 50, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abd8688

Keywords

-

Funding

  1. U.S. NSF [DMR-1608899]
  2. Bakar Fellowship
  3. US-NSF [1555336]
  4. Ministry of Education, Republic of Singapore [R-263-000-E19-114]
  5. U.S. National Science Foundation [1555336]
  6. Direct For Mathematical & Physical Scien [1555336] Funding Source: National Science Foundation
  7. Division Of Materials Research [1555336] Funding Source: National Science Foundation

Ask authors/readers for more resources

Thermography detects surface temperature and subsurface thermal activity of an object based on the Stefan-Boltzmann law. Impacts of the technology would be more far-reaching with finer thermal sensitivity, called noise-equivalent differential temperature (NEDT). Existing efforts to advance NEDT are all focused on improving registration of radiation signals with better cameras, driving the number close to the end of the roadmap at 20 to 40 mK. In this work, we take a distinct approach of sensitizing surface radiation against minute temperature variation of the object. The emissivity of the thermal imaging sensitizer (TIS) rises abruptly at a preprogrammed temperature, driven by a metal-insulator transition in cooperation with photonic resonance in the structure. The NEDT is refined by over 15 times with the TIS to achieve single-digit millikelvin resolution near room temperature, empowering ambient thermography for a broad range of applications such as in operando electronics analysis and early cancer screening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available