4.6 Article

Exploring Prediction of Antimicrobial Resistance Based on Protein Solvent Accessibility Variation

Journal

FRONTIERS IN GENETICS
Volume 12, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2021.564186

Keywords

relative solvent accessibility; antimicrobial resistance; scoring; AMR; secondary structure; protein variant; RSA

Funding

  1. NIH NIAID [1R01AI141810-01]
  2. University of Florida's Creating the Healthiest Generation - Moonshot initiative
  3. UF Office of the Provost
  4. UF Office of Research
  5. UF Health
  6. UF College of Medicine
  7. UF Clinical and Translational Science Institute

Ask authors/readers for more resources

Antimicrobial resistance (AMR) poses a significant and growing public health threat, requiring automatic identification of resistant bacterial strains. Research shows that known AMR protein variants tend to correspond to exposed residues, while susceptible counterparts tend to be buried. Based on these findings, a novel relative solvent accessibility-based AMR scoring system (RSA-AMR) has been developed to estimate the propensity of altering relative solvent accessibility of any protein variant, and potentially conferring or hindering AMR, providing a ten-fold increase in Specificity.
Antimicrobial resistance (AMR) is a significant and growing public health threat. Sequencing of bacterial isolates is becoming more common, and therefore automatic identification of resistant bacterial strains is of pivotal importance for efficient, wide-spread AMR detection. To support this approach, several AMR databases and gene identification algorithms have been recently developed. A key problem in AMR detection, however, is the need for computational approaches detecting potential novel AMR genes or variants, which are not included in the reference databases. Toward this direction, here we study the relation between AMR and relative solvent accessibility (RSA) of protein variants from an in silico perspective. We show how known AMR protein variants tend to correspond to exposed residues, while on the contrary their susceptible counterparts tend to be buried. Based on these findings, we develop RSA-AMR, a novel relative solvent accessibility-based AMR scoring system. This scoring system can be applied to any protein variant to estimate its propensity of altering the relative solvent accessibility, and potentially conferring (or hindering) AMR. We show how RSA-AMR score can be integrated with existing AMR detection algorithms to expand their range of applicability into detecting potential novel AMR variants, and provide a ten-fold increase in Specificity. The two main limitations of RSA-AMR score is that it is designed on single point changes, and a limited number of variants was available for model learning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available