4.6 Article

Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air quality modeling

Journal

SCIENCE BULLETIN
Volume 66, Issue 6, Pages 612-620

Publisher

ELSEVIER
DOI: 10.1016/j.scib.2020.12.008

Keywords

Anthropogenic emission inventory; High-resolution mapping; Air quality modeling

Funding

  1. National Natural Science Foundation of China [91744310, 41625020, 41921005]
  2. National Research Program for Key Issues in Air Pollution Control [DQGG0201]

Ask authors/readers for more resources

New challenges are emerging in fine-scale air quality modeling in China due to a lack of high-resolution emission maps. A new accurate high-resolution emission mapping approach reduces the modeled biases of air pollutant concentrations in densely populated areas, thus improving the assessment of population exposure.
New challenges are emerging in fine-scale air quality modeling in China due to a lack of high-resolution emission maps. Currently, only a few emission sources have accurate geographic locations (point sources), while a large part of sources, including industrial plants, are estimated as provincial totals (area sources) and spatially disaggregated onto grid cells based on proxies; this approach is reasonable to some extent but is highly questionable at fine spatial resolutions. Here, we compile a new comprehensive point source database that includes nearly 100,000 industrial facilities in China. We couple it with the frame of Multi-resolution Emission Inventory for China (MEIC), estimate point source emissions, combine point and area sources, and finally map China's anthropogenic emissions of 2013 at the spatial resolution of 30 '' x 30 '' (similar to 1 km). Consequently, the percentages of point source emissions in the total emissions increase from less than 30% in the MEIC up to a maximum of 84% for SO2 in 2013. The new point source-based emission maps show the uncoupled distribution of emissions and populations in space at fine spatial scales, however, such a pattern cannot be reproduced by any spatial proxy used in the conventional emissions mapping. This new accurate high-resolution emission mapping approach reduces the modeled biases of air pollutant concentrations in the densely populated areas compared to the raw MEIC inventory, thus improving the assessment of population exposure. (C) 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available