4.6 Article

Influence of the Al/Ge Ratio on the Structure and Self-Organization of Anisometric Imogolite Nanotubes

Journal

CRYSTALS
Volume 10, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/cryst10121094

Keywords

nanotube; imogolite; aluminogermanate; liquid-crystal; columnar phase; SAXS; swelling law

Funding

  1. French ANR agency [ANR-18-CE09-0001]

Ask authors/readers for more resources

Synthetic imogolite-like nanotubes (INT) with well-defined diameters represent a considerable opportunity for the development of advanced functional materials. Recent progress has made it possible to increase their aspect ratio and unique self-organization properties were evidenced. We suggest that slight modification of the synthesis conditions may drastically affect the resulting liquid-crystalline properties. In this work, we investigate how the precursor's [Al]/[Ge] molar ratio (R') impacts the morphology and the colloidal properties of aluminogermanate INTs by combining a multi-scale characterization. While only double-walled nanotubes are found for R' >= 1.8, the presence of single-walled nanotubes occurs when the ratio is lowered. Except for the lowest R' ratio investigated (R' = 0.66), all synthetic products present one-dimensional shapes with a high aspect ratio. Small-angle X-ray scattering experiments allow us to comprehensively investigate the colloidal properties of the final products. Our results reveal that a liquid-crystalline hexagonal columnar phase is detected down to R' = 1.33 and that it turns into a nematic arrested phase for R' = 0.90. These results could be useful for the development of novel stimuli-responsive nanocomposites based-on synthetic imogolite nanotubes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available