4.8 Article

Growth of NiAl-Layered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application

Journal

ADVANCED SCIENCE
Volume 8, Issue 5, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202002658

Keywords

anticorrosion; atomic layer deposition (ALD); double layered hydroxides (LDHs); graphene; microwave absorption

Funding

  1. National Natural Science Foundation of China [22068010, 21706046, 11564011]
  2. Natural Science Foundation of Hainan Province [2019RC142, 519QN176]
  3. Science and Technology Planning Project of Sichuan Province [2020YFH0053]

Ask authors/readers for more resources

The newly developed NiAl-LDH/G composite, synthesized by atomic-layer-deposition-assisted in situ growth, exhibits excellent microwave absorption performance and corrosion resistance, showing great potential for practical applications.
High-performance microwave absorbers with special features are desired to meet the requirements of more complex modern service environments, especially corrosive environments. Therefore, high-efficiency microwave absorbers with corrosion resistance should be developed urgently. Herein, a 3D NiAl-layered double hydroxide/graphene (NiAl-LDH/G) composite synthesized by atomic-layer-deposition-assisted in situ growth is presented as an anticorrosive microwave absorber. The content of NiAl-LDH in the composite is optimized to achieve impedance matching. Furthermore, under the cooperative effects of the interface polarization loss, conduction loss, and 3D porous sandwich-like structure, the optimal NiAl-LDH/G shows excellent microwave absorption performance with a minimum reflection loss of -41.5 dB and a maximum effective absorption bandwidth of 4.4 GHz at a loading of only 7 wt% in epoxy. Remarkably, the encapsulation effect of NiAl-LDH can restrain the galvanic corrosion owing to graphene. The epoxy coating with the NiAl-LDH/G microwave absorber on carbon steel exhibits long-term corrosion resistance, owing to the synergetic effect of the superior impermeability of graphene and the chloridion-capture capacity of the NiAl-LDH. The NiAl-LDH/G composite is a promising anticorrosive microwave absorber, and the findings of this study may motivate the development of functional microwave absorbers that meet the demands of anticorrosive performance of coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available