4.5 Article

Origin of a Simultaneous Suppression of Thermal Conductivity and Increase of Electrical Conductivity and Seebeck Coefficient in Disordered Cubic Cu2ZnSnS4

Journal

PHYSICAL REVIEW APPLIED
Volume 14, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.14.064073

Keywords

-

Funding

  1. CINECA Italian Supercomputing Facility [CZTS - HP10CONX70]
  2. Autonomous Province of Trento
  3. European Commission under the FET Open (Boheme) [863179]

Ask authors/readers for more resources

The parameters governing the thermoelectric efficiency of a material, Seebeck coefficient, electrical, and thermal conductivities, are correlated and their reciprocal interdependence typically prevents a simultaneous optimization. Here, we present the case of disordered cubic kesterite Cu2ZnSnS4, a phase stabilized by structural disorder at low temperature. With respect to the ordered form, the introduction of disorder improves the three thermoelectric parameters at the same time. The origin of this peculiar behavior lies in the localization of some Sn lone pair electrons, leading to rattling Sn ions. On one hand, these rattlers remarkably suppress thermal conductivity, dissipating lattice energy via optical phonons located below 1.5 THz; on the other, they form electron-deficient Sn-S bonds leading to a p -type dopinglike effect and highly localized acceptor levels, simultaneously enhancing electrical conductivity and the Seebeck coefficient. This phenomenon leads to a 3 times reduced thermal conductivity and doubling of both electrical conductivity and the Seebeck coefficient, resulting in a more than 20 times increase in figure of merit, although still moderate in absolute terms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available