4.5 Review

An Overview of Molecular Dynamic Simulation for Corrosion Inhibition of Ferrous Metals

Journal

METALS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/met11010046

Keywords

corrosion inhibitor; ferrous metal; molecular dynamics simulation; adsorption energy; binding energy

Funding

  1. Universiti Putra Malaysia, Putra Grant IPS [9657500]

Ask authors/readers for more resources

Molecular dynamics (MD) simulation is a powerful tool for investigating the molecular level working mechanisms of corrosion inhibitors, providing valuable information when combined with experimental measurements. Despite the growth in studies utilizing MD evaluation, there is still uncertainty regarding the approaches and steps for corrosion inhibition of organic inhibitors on ferrous metal in acidic solutions.
Molecular dynamics (MD) simulation is a powerful tool to study the molecular level working mechanism of corrosion inhibitors in mitigating corrosion. In the past decades, MD simulation has emerged as an instrument to investigate the interactions at the interface between the inhibitor molecule and the metal surface. Combined with experimental measurement, theoretical examination from MD simulation delivers useful information on the adsorption ability and orientation of the molecule on the surface. It relates the microscopic characteristics to the macroscopic properties which enables researchers to develop high performance inhibitors. Although there has been vast growth in the number of studies that use molecular dynamic evaluation, there is still lack of comprehensive review specifically for corrosion inhibition of organic inhibitors on ferrous metal in acidic solution. Much uncertainty still exists on the approaches and steps in performing MD simulation for corrosion system. This paper reviews the basic principle of MD simulation along with methods, selection of parameters, expected result such as adsorption energy, binding energy and inhibitor orientation, and recent publications in corrosion inhibition studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available