4.5 Article

Cooling under Applied Stress Rejuvenates Amorphous Alloys and Enhances Their Ductility

Journal

METALS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/met11010067

Keywords

metallic glasses; glass transition; rejuvenation; thermomechanical processing; yield stress; molecular dynamics simulations

Funding

  1. National Science Foundation [CNS-1531923]
  2. ACS Petroleum Research Fund [60092-ND9]
  3. Russian Academic Excellence Project 5-100

Ask authors/readers for more resources

This study uses molecular dynamics simulations to investigate the effect of tensile stress applied during cooling of binary glasses on potential energy states and mechanical properties. The results show that higher applied stress can enhance potential energy and improve the plasticity of glasses. Additionally, the amorphous structure of rejuvenated glasses characterized by an increase in the number of contacts between smaller type atoms can enhance ductility in glasses prepared at larger applied stresses and higher initial temperatures.
The effect of tensile stress applied during cooling of binary glasses on the potential energy states and mechanical properties is investigated using molecular dynamics simulations. We study the three-dimensional binary mixture that was first annealed near the glass transition temperature and then rapidly cooled under tension into the glass phase. It is found that at larger values of applied stress, the liquid glass former freezes under higher strain and its potential energy is enhanced. For a fixed cooling rate, the maximum tensile stress that can be applied during cooling is reduced upon increasing initial temperature above the glass transition point. We also show that the amorphous structure of rejuvenated glasses is characterized by an increase in the number of contacts between smaller type atoms. Furthermore, the results of tensile tests demonstrate that the elastic modulus and the peak value of the stress overshoot are reduced in glasses prepared at larger applied stresses and higher initial temperatures, thus indicating enhanced ductility. These findings might be useful for the development of processing and fabrication methods to improve plasticity of bulk metallic glasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available