4.7 Review

A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels

Journal

JOURNAL OF CO2 UTILIZATION
Volume 43, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2020.101381

Keywords

Photocatalytic CO2 reduction; Thermodynamics analysis; Mass transfer limitations; Metal-organic frameworks; MOFs Synthesis

Funding

  1. Universiti Teknologi Malaysia

Ask authors/readers for more resources

This paper explores the recent developments of metal-organic frameworks (MOFs) as photocatalysts for CO2 reduction, discussing their advantages and challenges, as well as the main principles, thermodynamics, mechanisms, and mass transfer theory of photocatalytic CO2 reduction. Detailed discussions are presented on synthesis and classifications of MOF-based photocatalysts for increasing the photocatalytic CO2 conversion, with future perspectives suggested to enhance efficiency in an economically and environmentally sustainable manner.
Photocatalytic CO2 reduction into valuable chemicals and fuels using solar energy is an attractive approach to solve environmental pollution caused by the emissions of greenhouse gases (mainly CO2) and the fossil fuels depletion. Photocatalysis has been recognized as a solar fuel production system due to its prospective applications in both reducing carbon dioxide emissions and producing of valuable chemicals under solar light. Recently, new, low-cost, crystalline porous materials known as metal-organic frameworks (MOFs) have been introduced as photocatalysts. However, they still face some challenges in terms of synthesis, sunlight utilization and some difficulties in understanding the structure-activity relationship. In this work, recent developments of metal-organic frameworks (MOFs) as a photocatalyst owing to their promising photochemical and unique textural properties for photocatalytic CO2 reduction has been explored. The main objective is to explore the main fundamentals such as the principle, thermodynamics and the mechanism including the heterostructures of charges transfer.The mass transfer theory for photocatalytic CO2 reduction have also been clearly deliberated. The recent developments in synthesis and classifications of MOF-based photocatalysts for increasing the photocatalytic CO2 conversion are discussed in details. Finally, future perspectives of MOF-assisted photocatalytic CO2 reduction have been suggested to provide an insight and important step forward to enhance efficiency with an economic and environmentally sustainable system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available