4.7 Article

MOFs in carbon capture-past, present and future

Journal

JOURNAL OF CO2 UTILIZATION
Volume 42, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2020.101297

Keywords

MOFs in carbon capture; Synthesis protocol; Capture capacity comparative analysis; Computational modelling; Contactors; Morphology and screening

Funding

  1. Council of Scientific and Industrial Research (CSIR), Govt. of India [22(0783)/19/EMR-II]
  2. Department of Atomic Energy (DAE), Mumbai

Ask authors/readers for more resources

Metal Organic Frame works (MOFs) are being widely used in carbon capture through adsorption and membrane techniques, which are yet to be commercialized. This is due to their high affinity towards acidic gases and exceptional characteristics such as crystallinity, structural stability, high surface area and flexible pore dimensions. In this review, wide range of topics viz., synthesis protocols, modifications employed to further improve their attributes, comprehensive comparison of different MOFs used in carbon capture, thermo-kinetics modelling studies, contactors and material screening. Every section has been discussed in detail in terms of developmental trends, future challenges and prospects besides summarizing in the form of comprehensive tables at a glance for the benefit of the readers. Solvo-thermal method was found to be the most effective synthesis method besides ultra-sonication and microwave assisted methods, which also gave very good crystalline structures. The copper ligand based unmodified Cu-BTC MOF gave the maximum CO2 uptake value of 9.59 mmol/g at 273 K and 1 atm. Zn(Bmic)(AT) MOF was the only species to be tested at 353 K. Alternatively, a photo-responsive MOF, Mg-IRMOF-74-III functionalized with azopyridine gave a CO2 uptake of 89 cc/g which is comparable to many of the conventional MOFs. Kinetics indicate MOF adsorption mostly follows pseudo second order reactions either along with Toth isotherms or modified Langmuir isotherms. Fixed and fluidized bed reactors perform the best in terms of carbon capture studies. Moisture affinity, active sites and crystallinity were found to be the best factors considered whilst screening of proper MOFs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available