4.6 Article

Featureless adaptive optimization accelerates functional electronic materials design

Journal

APPLIED PHYSICS REVIEWS
Volume 7, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0018811

Keywords

-

Funding

  1. National Science Foundation (NSF) [DMR-1729303, DMR-1729743]
  2. Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR0001209]
  3. NSF [ACI-1548562]

Ask authors/readers for more resources

Electronic materials that exhibit phase transitions between metastable states (e.g., metal-insulator transition materials with abrupt electrical resistivity transformations) are challenging to decode. For these materials, conventional machine learning methods display limited predictive capability due to data scarcity and the absence of features that impede model training. In this article, we demonstrate a discovery strategy based on multi-objective Bayesian optimization to directly circumvent these bottlenecks by utilizing latent variable Gaussian processes combined with high-fidelity electronic structure calculations for validation in the chalcogenide lacunar spinel family. We directly and simultaneously learn phase stability and bandgap tunability from chemical composition alone to efficiently discover all superior compositions on the design Pareto front. Previously unidentified electronic transitions also emerge from our featureless adaptive optimization engine. Our methodology readily generalizes to optimization of multiple properties, enabling co-design of complex multifunctional materials, especially where prior data is sparse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available