4.8 Article

Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection

Journal

NANO ENERGY
Volume 78, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2020.105403

Keywords

Artificial auditory pathway; Self-adaptation; Triboelectric nanogenerator; Organic field film Transistor; Self-powered

Funding

  1. National Natural Science Foundation of China [61974029]
  2. National Key Research and Development Program of China [2016YFB0401103]

Ask authors/readers for more resources

Human auditory system is one of the most efficient and important biological system for human beings. To reproduce this system with electronic devices would profoundly advance artificial nervous system. However, emulating this system requires a complex architecture to mimic the biological auditory system functions such as listening, analyzing, and integrating instructions, which is still not available. Here, we report a triboelectric nanogenerator (TENG) actuated self-powered artificial auditory pathway to emulate the biological auditory functionalities, demonstrating its application in the intelligent neuromorphic computing and sound detection. The self-powered artificial auditory pathway consists of a femtosecond laser (fs) processed TENG and a field effect synaptic transistor (FEST) which functions as acoustic receptor and acoustic synapse, respectively. Moreover, the fs laser-induced auditory TENG exhibits broader frequency response with high sensitivity (129 mV/dB), and excellent empathy social behavior, and various typical synaptic functions can be well mimicked through TENG actuated FEST. Meanwhile, a self-adaptation artificial neuromorphic circuit with noise-adjustable behavior is demonstrated, which substantially improves the efficiency and accuracy of the instruction recognition process for more human-computer interaction system. This work provides an effective way to well mimic the biological auditory functions, which paves a new way to achieve the instruction recognition in a noise-intensity range ambient, and would profoundly decrease the power-consumption in the field of future neuromorphic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available