4.4 Article

Magnetic lattices for orthosymplectic quivers

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 12, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP12(2020)092

Keywords

Discrete Symmetries; Extended Supersymmetry; Field Theories in Higher Dimensions; Supersymmetric Gauge Theory

Funding

  1. STFC [ST/P000762/1]
  2. National Thousand-Young-Talents Program of China
  3. National Natural Science Foundation of China [11950410497]
  4. China Postdoctoral Science Foundation [2019M650616]
  5. Simons Center for Geometry and Physics, Stony Brook University
  6. MIT-Imperial College London Seed Fund
  7. STFC [ST/P000762/1] Funding Source: UKRI

Ask authors/readers for more resources

For any gauge theory, there may be a subgroup of the gauge group which acts trivially on the matter content. While many physical observables are not sensitive to this fact, the choice of the precise gauge group becomes crucial when the magnetic lattice of the theory is considered. This question is addressed in the context of Coulomb branches for 3d N = 4 quiver gauge theories, which are moduli spaces of dressed monopole operators. We compute the Coulomb branch Hilbert series of many unitary-orthosymplectic quivers for different choices of gauge groups, including diagonal quotients of the product gauge group of individual factors, where the quotient is by a trivially acting subgroup. Choosing different such diagonal groups results in distinct Coulomb branches, related as orbifolds. Examples include nilpotent orbit closures of the exceptional E-type algebras and magnetic quivers that arise from brane physics. This includes Higgs branches of theories with 8 supercharges in dimensions 4, 5, and 6. A crucial ingredient in the calculation of exact refined Hilbert series is the alternative construction of unframed magnetic quivers from resolved Slodowy slices, whose Hilbert series can be derived from Hall-Littlewood polynomials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available