4.7 Article

What Can Cellular Redox, Iron, and Reactive Oxygen Species Suggest About the Mechanisms and Potential Therapy of COVID-19?

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fcimb.2020.569709

Keywords

COVID-19; redox; ROS— reactive oxygen species; glutathione; ascorbate; iron; chelators; ferroptosis

Ask authors/readers for more resources

Accumulating evidence suggests that there are important contributions to coronavirus disease (COVID-19) from redox imbalance and improperly coordinated iron, which cause cellular oxidative damage and stress. Cells have developed elaborate redox-dependent processes to handle and store iron, and their disfunction leads to several serious diseases. Cellular reductants are important as reactive oxygen species (ROS) scavengers and to power enzymatic repair mechanisms, but they also may help generate toxic ROS. These complicated interrelationships are presented in terms of a cellular redox/iron/ROS triad, including ROS generation both at improperly coordinated iron and enzymatically, ROS interconvertibility, cellular signaling and damage, and reductant and iron chelator concentration-dependent effects. This perspective provides the rational necessary to strongly suggest that COVID-19 disrupts this interdependent triad, producing a substantial contribution to the ROS load, which causes direct ROS-induced protein and phospholipid damage, taxes cellular resources and repair mechanisms, and alters cellular signaling, especially in the more critical acute respiratory distress syndrome (ARDS) phase of the infection. Specific suggestions for therapeutic interventions using reductants and chelators that may help treat COVID-19 are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available