4.8 Article

Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229e

Journal

ELIFE
Volume 10, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.64509

Keywords

-

Categories

Funding

  1. National Science Foundation [DGE-1762114]
  2. Pew Charitable Trusts [NIH R35 GM119774-01]

Ask authors/readers for more resources

Seasonal coronaviruses, including OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein exposed to human immune response, potentially leading to reinfection. This adaptive change may require continual vaccine updates for effective protection against these viruses.
Seasonal coronaviruses (OC43, 229E, NL63, and HKU1) are endemic to the human population, regularly infecting and reinfecting humans while typically causing asymptomatic to mild respiratory infections. It is not known to what extent reinfection by these viruses is due to waning immune memory or antigenic drift of the viruses. Here we address the influence of antigenic drift on immune evasion of seasonal coronaviruses. We provide evidence that at least two of these viruses, OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein that are exposed to human humoral immunity. This suggests that reinfection may be due, in part, to positively selected genetic changes in these viruses that enable them to escape recognition by the immune system. It is possible that, as with seasonal influenza, these adaptive changes in antigenic regions of the virus would necessitate continual reformulation of a vaccine made against them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available