4.8 Article

Universe and taxon-specific trends in protein sequences as a function of age

Journal

ELIFE
Volume 10, Issue -, Pages -

Publisher

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.57347

Keywords

-

Categories

Funding

  1. John Templeton Foundation [60814]
  2. National Institutes of Health [GM-104040]

Ask authors/readers for more resources

The study found that the reduction in hydrophobic clustering is universal across lineages, while only young animal domains tend to have higher structural disorder. Trends in amino acid composition among ancient domains reflect the order of recruitment into the genetic code, indicating that the composition of contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life.
Extant protein-coding sequences span a huge range of ages, from those that emerged only recently to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available