4.7 Article

Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest

Journal

ECOLOGY
Volume 97, Issue 12, Pages 3369-3378

Publisher

WILEY-BLACKWELL
DOI: 10.1002/ecy.1595

Keywords

ammonium oxidation; mycorrhizal association; nutrient economy; phosphorus soil carbon storage; substrate use efficiency

Categories

Funding

  1. Agriculture and Food Research Initiative Competitive from the USDA National Institute of Food and Agriculture [2013-67011-21095]
  2. Indiana Academy of Science Senior Science Grant
  3. Department of Energy-Office of Biological and Environmental Research Terrestrial Ecosystem Science Program
  4. US National Science Foundation (DEB) [1153401]

Ask authors/readers for more resources

Ecosystems often show differential sensitivity to chronic nitrogen (N) deposition; hence, a critical challenge is to improve our understanding of how and why site-specific factors mediate biogeochemical responses to N enrichment. We examined the extent to which N impacts on soil carbon (C) and N dynamics depend on microbial resource stoichiometry. We added N to forest plots dominated by ectomycorrhizal (ECM) trees, which have litter and soil pools rich in organic N and relatively wide C:N ratios, and adjacent forest plots dominated by arbuscular mycorrhizal (AM) trees, which have litter and soil pools rich in inorganic N and relatively narrow C:N ratios. While microbes in both plot types exhibited fairly strict biomass homeostasis, microbes in AM- and ECM-dominated plots differed in their physiological responses to N addition. Microbes in ECM plots responded to N enrichment by decreasing their investment in N-acquisition enzymes (relative to C-acquisition enzymes) and increasing N mineralization rates (relative to C mineralization rates), suggesting that N addition alleviated microbial N demand. In contrast, heterotrophic microbial activities in AM plots were unaffected by N addition, most likely as a result of N-induced increases in net nitrification (60% increase relative to control plots) and nitrate mobilization (e.g., sixfold increases in mobilization relative to control plots). Combined, our findings suggest the stoichiometric differences between AM and ECM soils are the primary drivers of the observed responses. Plant and microbial communities characterized by wide C:N are more susceptible to N-induced changes in decomposition and soil C dynamics, whereas communities characterized by narrow C:N are more susceptible to N-induced nitrate leaching losses. Hence, the biogeochemical consequences of N deposition in temperate forests may be driven by the stoichiometry of the dominant trees and their associated microbes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available