4.7 Article

Advantages of Lateral Flow Assays Based on Fluorescent Submicrospheres and Quantum Dots for Clostridium difficile Toxin B Detection

Journal

TOXINS
Volume 12, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/toxins12110722

Keywords

lateral flow assay; fluorescent submicrospheres; quantum dot nanobead; toxin B

Funding

  1. National Key Research and Development Program of China [2017YFC1601203]

Ask authors/readers for more resources

Clostridium difficile colitis is caused by a cytotoxin produced by the anaerobic bacteria C. difficile in the epithelial cells of the large intestine, particularly C. difficile toxin B (TcdB). However, the sensitivity of currently utilized C. difficile endotoxin determination methods has been called into question, and, therefore, more accurate and convenient detection methods are needed. Our study is the first to systematically compare fluorescent submicrosphere-based and quantum-dot nanobead-based lateral fluidity measurement methods (FMs-LFA and QDNBs-LFA) with toxin B quantification in fecal samples via sandwich analysis. The limits of detection (LOD) of FMs-LFA and QDNBs-LFA in the fecal samples were 0.483 and 0.297 ng/mL, respectively. TcdB analyses of the fecal samples indicated that the results of QDNBs-LFA and FMs-LFA were consistent with those of a commercial enzyme-linked immunosorbent assay (ELISA) test kit. The sensitivity of QDNBs-LFA was highly correlated with clinical diagnoses. Therefore, quantum dot nanobeads (QDNBs) are deemed highly suitable for lateral fluidity analyses, which would facilitate the implementation of portable and rapid on-the-spot applications, such as food hygiene and safety tests and onsite medical testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available