4.7 Article

Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential

Journal

PLOS PATHOGENS
Volume 16, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1009131

Keywords

-

Funding

  1. Faculty Research Scholar Award by the Howard Hughes Medical Institute (HHMI)
  2. Bill & Melinda Gates Foundation (BMGF) [OPP1158190]
  3. National Institutes of Health (NIH) [R01 AI124165, R01 AI153404]
  4. National Science Foundation (NSF) [1853495]
  5. Bill and Melinda Gates Foundation [OPP1158190] Funding Source: Bill and Melinda Gates Foundation

Ask authors/readers for more resources

Author summary In natural settings the female Anopheles gambiae mosquito, the major malaria vector, blood feeds multiple times in her lifespan. Here we demonstrate that an additional blood feed accelerates the growth of Plasmodium falciparum malaria parasites in this mosquito. Incorporating these data into a mathematical model across sub-Saharan Africa reveals that malaria transmission potential is likely to be higher than previously thought, making disease elimination more difficult. Additionally, we show that control strategies that manipulate mosquito reproduction with the aim of suppressing Anopheles populations may inadvertently favor malaria transmission. Our data also suggest that parasites can be transmitted by younger mosquitoes, which are less susceptible to insecticide killing, with negative implications for the success of insecticide-based strategies. Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 +/- 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R-0, and find the average R-0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available