4.7 Article

Evaluating the Economic Incentives of Biomass Removal on Site Preparation for Different Harvesting Systems in Australia

Journal

FORESTS
Volume 11, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/f11121370

Keywords

biomass harvesting; forest residues; site preparation costs; economics; mathematical model

Categories

Funding

  1. IEA Bioenergy, Task 43, under the project entitled Alternative harvest systems and their impact on site preparation and biomass recovery economics

Ask authors/readers for more resources

Research Highlights: This study evaluated the impacts of biomass recovery on site preparation costs while proposing a mathematical model and framework to catalogue the benefits depending on harvesting system. Background and Objectives: Biomass as a viable product depends on the requisite costs of production compared to the price paid by relative markets. The removal of biomass directly impacts site preparation costs, and the operational and economic ramifications of this should inform the feasibility of biomass harvesting and market viability. The relative incentives for biomass removal depend on the quantity, presentation, and location of the residues and are thus a result of the commercial sawlog harvesting system. This incentive also largely depends on the required work to prepare a site for replanting. Materials and Methods: This study developed a mathematical model to connect the concepts of site preparation, harvesting, and biomass costs and revenues to determine the maximum net revenue. This work also developed a framework for understanding and calculating the key model inputs related to site preparation and the relative economic site preparation incentive for biomass harvesting. The framework was then illustrated by using industry data from plantations in Queensland, Australia. Results and Conclusions: The analysis identified a potential reduction in site preparation costs due to biomass harvesting of USD 75-450 ha(-1), with a greater incentive when using cut-to-length harvesting systems compared with whole-tree harvesting due to the greater volume of residues after cut-to-length harvesting. For example, a removal of 20 t ha(-1) of recoverable biomass after cut-to-length harvesting may equate to an economic incentive of USD 22 t(-1). Depending on the biomass market, this incentive may represent a significant percentage (or even exceed) the biomass market price. The combination of biomass market price plus site preparation economic incentive may make biomass an attractive market opportunity, even in challenging biomarkets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available