4.7 Article

Multi-organ toxicological impact of fungicide propiconazole on biochemical and histological profile of freshwater fish Channa punctata Bloch

Journal

ECOLOGICAL INDICATORS
Volume 63, Issue -, Pages 359-365

Publisher

ELSEVIER
DOI: 10.1016/j.ecolind.2015.11.052

Keywords

Triazole fungicide; Fish; Oxidative biomarkers; Sub-lethal effects

Funding

  1. University Grants Commission (UGC), New Delhi, Government of India [2013(SA-II)/RA-2012-14-GE-WES-2400]
  2. Department of Biotechnology, Government of India [BT/Bio-CARe/01/10219/2013-14]

Ask authors/readers for more resources

Fungicides are a pesticide that particularly kills or destroy fungi responsible for several diseases associated to humans and other living organisms. Assessment of toxic effects and mechanisms of fungicide action is important because humans and domesticated animals get exposed to these pesticides through a wide variety of applications. Several fungicides are being used at the large scale for the crop protection from the fungal invasion. Propiconazole (PCZ), a trazole-containing fungicide, is widely used in China and various Asian countries for food crop protection which made it easily to exposed to the aquatic system. Long term usage of PCZ may contaminate the water bodies, but its toxicity to aquatic organisms is not well studied. In this study, freshwater fish, Channa punctata Bloch was exposed to different sub-lethal concentrations of the fungicide, PCZ (0.5 and 5 ppm) for a period of 96 h. Various biochemical assays and histological alterations were measured to determine the organ toxicity caused by PCZ exposure particularly in liver, kidney and gills of the fishes. Compared to the control group, fish exposed to PCZ (96 h) showed marked dose dependent toxicity. The levels of lipid peroxidation (LPO) and protein carbonyls (PC), oxidative stress biomarker of liver, kidney and gills in the experimental group were significantly higher (P < 0.05 and P < 0.001) compared to the control group. Levels of reduced glutathione (GSH) and non-protein thiols (NP-SH) decreased significantly (P<0.05-0.001) in all analyzed intoxicated organs of the PCZ exposed fishes. Activity of glutathione-S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) in fungicide treated groups was significantly lowered (P<0.05-0.001). In addition, histopathological examination in the organs showed significant changes like atrophy of primary and secondary gill lamellae, infiltrations, inflammation, hepatocyte degeneration, vacuolization and necrotic kidney. Thus, PCZ exposure altered the oxidative stress homeostasis and brought about histopathological changes which may serve as potential biomarkers of the PCZ toxicity in the laboratory set-up for potential risk assessment. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available