4.7 Article

Environmental biodegradability of recombinant structural protein

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-80114-6

Keywords

-

Ask authors/readers for more resources

Recombinant structural protein BP1 shows excellent thermal and mechanical properties, can be produced from biomass, and has potential for biodegradability. It has superior flexural strength and modulus compared to commercially available biodegradable polymers, and can be efficiently hydrolyzed and mineralized under certain conditions.
Next generation polymers needs to be produced from renewable sources and to be converted into inorganic compounds in the natural environment at the end of life. Recombinant structural protein is a promising alternative to conventional engineering plastics due to its good thermal and mechanical properties, its production from biomass, and its potential for biodegradability. Herein, we measured the thermal and mechanical properties of the recombinant structural protein BP1 and evaluated its biodegradability. Because the thermal degradation occurs above 250 degrees C and the glass transition temperature is 185 degrees C, BP1 can be molded into sheets by a manual hot press at 150 degrees C and 83 MPa. The flexural strength and modulus of BP1 were 115 +/- 6 MPa and 7.38 +/- 0.03 GPa. These properties are superior to those of commercially available biodegradable polymers. The biodegradability of BP1 was carefully evaluated. BP1 was shown to be efficiently hydrolyzed by some isolated bacterial strains in a dispersed state. Furthermore, it was readily hydrolyzed from the solid state by three isolated proteases. The mineralization was evaluated by the biochemical oxygen demand (BOD)-biodegradation testing with soil inocula. The BOD biodegradability of BP1 was 70.2 +/- 6.0 after 33 days.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available