4.7 Article

A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction

Journal

SCIENTIFIC REPORTS
Volume 10, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-77220-w

Keywords

-

Funding

  1. National Health and Medical Research Council of Australia Program Grant [350833]
  2. ADNI (National Institutes of Health) [U01 AG024904]
  3. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  4. National Institute on Aging
  5. National Institute of Biomedical Imaging and Bioengineering
  6. Alzheimer's Association
  7. Alzheimer's Drug Discovery Foundation
  8. Araclon Biotech
  9. AbbVie
  10. BioClinica, Inc.
  11. Biogen
  12. Bristol-Myers Squibb Company
  13. CereSpir, Inc.
  14. Cogstate
  15. Eisai Inc.
  16. Elan Pharmaceuticals, Inc.
  17. Eli Lilly and Company
  18. EuroImmun
  19. F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
  20. Fujirebio
  21. GE Healthcare
  22. IXICO Ltd.
  23. Janssen. Alzheimer Immunotherapy Research and Development, LLC.
  24. Johnson & Johnson Pharmaceutical Research & Development LLC.
  25. Lumosity
  26. Lundbeck
  27. Merck Co., Inc.
  28. Meso Scale Diagnostics, LLC.
  29. NeuroRx Research
  30. Neurotrack Technologies
  31. Novartis Pharmaceuticals Corporation
  32. Pfizer Inc.
  33. Piramal Imaging
  34. Servier
  35. Takeda Pharmaceutical Company
  36. Transition Therapeutics
  37. Canadian Institutes of Health Research

Ask authors/readers for more resources

Data collected from clinical trials and cohort studies, such as dementia studies, are often high-dimensional, censored, heterogeneous and contain missing information, presenting challenges to traditional statistical analysis. There is an urgent need for methods that can overcome these challenges to model this complex data. At present there is no cure for dementia and no treatment that can successfully change the course of the disease. Machine learning models that can predict the time until a patient develops dementia are important tools in helping understand dementia risks and can give more accurate results than traditional statistical methods when modelling high-dimensional, heterogeneous, clinical data. This work compares the performance and stability of ten machine learning algorithms, combined with eight feature selection methods, capable of performing survival analysis of high-dimensional, heterogeneous, clinical data. We developed models that predict survival to dementia using baseline data from two different studies. The Sydney Memory and Ageing Study (MAS) is a longitudinal cohort study of 1037 participants, aged 70-90 years, that aims to determine the effects of ageing on cognition. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal study aimed at identifying biomarkers for the early detection and tracking of Alzheimer's disease. Using the concordance index as a measure of performance, our models achieve maximum performance values of 0.82 for MAS and 0.93 For ADNI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available