4.6 Article

Development of pH-Responsive Polymer Coating as an Alternative to Enzyme-Based Stem Cell Dissociation for Cell Therapy

Journal

MATERIALS
Volume 14, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/ma14030491

Keywords

angiogenesis; enzyme free cell detachment; hindlimb ischemia; human adipose tissue-derived stem cells; pH-sensitive polymer

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2016M3A9B4919711, 2018M3A9E2023255, 2019R1C1C1007384]
  2. National Research Foundation of Korea [2018M3A9E2023255, 2019R1C1C1007384] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The study developed a simple and easy cell detachment method by modifying the surface with the pH-responsive degradation property of poly (amino ester), allowing for perfect detachment of stem cells in a short period of time. This nonenzymatic approach showed similar cellular properties to conventional enzymatic cell detachment, and demonstrated potential therapeutic applications in in vivo experiments.
Cell therapy usually accompanies cell detachment as an essential process in cell culture and cell collection for transplantation. However, conventional methods based on enzymatic cell detachment can cause cellular damage including cell death and senescence during the routine cell detaching step due to an inappropriate handing. The aim of the current study is to apply the pH-responsive degradation property of poly (amino ester) to the surface of a cell culture dish to provide a simple and easy alternative method for cell detachment that can substitute the conventional enzyme treatment. In this study, poly (amino ester) was modified (cell detachable polymer, CDP) to show appropriate pH-responsive degradation under mild acidic conditions (0.05% (w/v) CDP, pH 6.0) to detach stem cells (human adipose tissue-derived stem cells (hADSCs)) perfectly within a short period (less than 10 min). Compared to conventional enzymatic cell detachment, hADSCs cultured on and detached from a CDP-coated cell culture dish showed similar cellular properties. We further performed in vivo experiments on a mouse hindlimb ischemia model (1.0 x 10(6) cells per limb). The in vivo results indicated that hADSCs retrieved from normal cell culture dishes and CDP-coated cell culture dishes showed analogous therapeutic angiogenesis. In conclusion, CDP could be applied to a pH-responsive cell detachment system as a simple and easy nonenzymatic method for stem cell culture and various cell therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available